Background: Congenital sodium diarrhea (CSD) is a rare enteropathy displaying both broad variability in clinical severity and genetic locus and allelic heterogeneity. Eleven CSD patients were reported so far with SLC9A3 variants that impair the function of the encoded intestinal sodium-proton exchanger 3 (NHE3).
Methods: We report a 4-year-old patient, born prematurely in the 35th week of gestation, with antenatal polyhydramnios and dilated intestinal loops, and with diarrhea of congenital onset, 2-6 times a day, and with polydipsia. She thrived age-appropriately under a normal family diet. Serum sodium levels were repeatedly normal but urinary sodium excretion was low. Exome sequencing revealed compound heterozygous variants in SLC9A3 as the likely cause of the congenital diarrhea.
Results: While exome sequencing did not reveal pathogenic or likely pathogenic variants in other genes that cause syndromic or non-syndromic forms of congenital and intractable diarrheas, we identified novel compound heterozygous variants in SLC9A3, a complex allele with two missense changes, NP_004165.2:p.[Ser331Leu;Val449Ile] and in-trans the missense variant p.(Phe451Ser).
Conclusion: The clinical phenotype here appears to localize to the milder end of the known CSD spectrum, and the identified variants suggest that this is the twelfth patient reported to date with CSD due to mutations in SLC9A3.
Keywords: CSD; NHE3; SLC9A3; compound heterozygous; parenteral nutrition; urinary sodium.
© 2022 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals LLC.