The study of gas adsorption on a solid surface evaluates the affinity between sorbate gas and sorbent substrate and factors that contribute to this. This paper presents a test platform for adsorption experiments of various gases on various solid surfaces. Controlled environmental conditions enable investigations in materials surface science and increase the consistency among adsorption data. The system utilizes a quartz crystal microbalance to perform gravimetric analysis of deposition and adsorption, enabling investigation of the interaction of gaseous molecules with solid surfaces. In this study, a quartz crystal microbalance as gas adsorption detector was integrated with an environmental chamber to create a versatile tool for gas adsorption experiments on thin films. Experimental operation of this apparatus was demonstrated via acquisition of the adsorption isotherms of cyclohexane vapor on a gold surface at 55 and 70 °C. The result indicated International Union of Pure and Applied Chemistry Type II adsorption. Consequentially, application of the Brunauer-Emmett-Teller model to the isotherm data subject to predefined criteria for linear region selection yielded a surface area of the sorbent of 0.53 cm2 at 55 °C. From the monolayer region of the isotherms, the isosteric heat of adsorption of the cyclohexane vapor on gold was calculated to be 37 kJ mol-1.