The prevalence of atria-related diseases increases exponentially with age and is associated with ATP supply-to-demand imbalances. Because evidence suggests that cAMP regulates ATP supply-to-demand, we explored aged-associated alterations in atrial ATP supply-to-demand balance and its correlation with cAMP levels. Right atrial tissues driven by spontaneous sinoatrial node impulses were isolated from aged (22-26 months) and adult (3-4 months) C57/BL6 mice. ATP demand increased by addition of isoproterenol or 3-Isobutyl-1-methylxanthine (IBMX) and decreased by application of carbachol. Each drug was administrated at the dose that led to a maximal change in beating rate (Xmax) and to 50% of that maximal change in adult tissue (X50). cAMP, NADH, NAD + NADH, and ATP levels were measured in the same tissue. The tight correlation between cAMP levels and the beating rate (i.e., the ATP demand) demonstrated in adult atria was altered in aged atria. cAMP levels were lower in aged compared to adult atrial tissue exposed to X50 of ISO or IBMX, but this difference narrowed at Xmax. Neither ATP nor NADH levels correlated with ATP demand in either adult or aged atria. Baseline NADH levels were lower in aged as compared to adult atria, but were restored by drug perturbations that increased cAMP levels. Reduction in Ca2+-activated adenylyl cyclase-induced decreased cAMP and prolongation of the spontaneous beat interval of adult atrial tissue to their baseline levels in aged tissue, brought energetics indices to baseline levels in aged tissue. Thus, cAMP regulates right atrial ATP supply-to-demand matching and can restore age-associated ATP supply-to-demand imbalance.
Keywords: Aging; Beating rate; Energetics; Mitochondria; cAMP.
© 2022. The Author(s), under exclusive licence to American Aging Association.