Zero-field polarity-reversible Josephson supercurrent diodes enabled by a proximity-magnetized Pt barrier

Nat Mater. 2022 Sep;21(9):1008-1013. doi: 10.1038/s41563-022-01300-7. Epub 2022 Jul 7.

Abstract

Simultaneous breaking of inversion and time-reversal symmetries in a conductor yields a non-reciprocal electronic transport1-3, known as the diode or rectification effect, that is, low (ideally zero) conductance in one direction and high (ideally infinite) conductance in the other. So far, most of the diode effects observed in non-centrosymmetric polar/superconducting conductors4-7 and Josephson junctions8-10 require external magnetic fields to break the time-reversal symmetry. Here we report zero-field polarity-switchable Josephson supercurrent diodes, in which a proximity-magnetized Pt layer by ferrimagnetic insulating Y3Fe5O12 serves as the Rashba(-type) Josephson barrier. The zero-field diode efficiency of our proximity-engineered device reaches up to ±35% at 2 K, with a clear square-root dependence on temperature. Measuring in-plane field-strength/angle dependences and comparing with Cu-inserted control junctions, we demonstrate that exchange spin-splitting11-13 and Rashba(-type) spin-orbit coupling13-15 at the Pt/Y3Fe5O12 interface are key for the zero-field giant rectification efficiency. Our achievement advances the development of field-free absolute Josephson diodes.