Deep Learning Model for Grading Metastatic Epidural Spinal Cord Compression on Staging CT

Cancers (Basel). 2022 Jun 30;14(13):3219. doi: 10.3390/cancers14133219.

Abstract

Background: Metastatic epidural spinal cord compression (MESCC) is a disastrous complication of advanced malignancy. Deep learning (DL) models for automatic MESCC classification on staging CT were developed to aid earlier diagnosis. Methods: This retrospective study included 444 CT staging studies from 185 patients with suspected MESCC who underwent MRI spine studies within 60 days of the CT studies. The DL model training/validation dataset consisted of 316/358 (88%) and the test set of 42/358 (12%) CT studies. Training/validation and test datasets were labeled in consensus by two subspecialized radiologists (6 and 11-years-experience) using the MRI studies as the reference standard. Test sets were labeled by the developed DL models and four radiologists (2−7 years of experience) for comparison. Results: DL models showed almost-perfect interobserver agreement for classification of CT spine images into normal, low, and high-grade MESCC, with kappas ranging from 0.873−0.911 (p < 0.001). The DL models (lowest κ = 0.873, 95% CI 0.858−0.887) also showed superior interobserver agreement compared to two of the four radiologists for three-class classification, including a specialist (κ = 0.820, 95% CI 0.803−0.837) and general radiologist (κ = 0.726, 95% CI 0.706−0.747), both p < 0.001. Conclusion: DL models for the MESCC classification on a CT showed comparable to superior interobserver agreement to radiologists and could be used to aid earlier diagnosis.

Keywords: Bilsky classification; CT; MRI; deep learning model; epidural spinal cord compression; metastatic epidural spinal cord compression; metastatic spinal cord compression; spinal metastases classification; spinal metastatic disease.