The effects of total body irradiation (TBI) to the capacity of skeletal muscle hypertrophy were quantified using the compensatory muscle hypertrophy model. We additionally assessed the responses of stem and/or progenitor cells in the muscles. A single TBI of 9.0, 5.0 and 2.5 Gy was delivered to C57BL/6 mice. Bone marrow stromal cells were obtained from GFP-Tg mice, and were injected into the tail vein of the recipient mice (1 × 106 cells/mouse), for bone marrow transplantation (BMT). Five weeks after TBI, the mean GFP-chimerism in the blood was 96 ± 0.8% in the 9 Gy, 83 ± 3.9% in the 5 Gy, and 8.4 ± 3.4% in the 2.5 Gy groups. This implied that the impact of 2.5 Gy is quite low and unavailable as the BMT treatment. Six weeks after the TBI/BMT procedure, muscle hypertrophy was induced in the right plantaris muscle by surgical ablation (SA) of the synergist muscles (gastrocnemius and soleus), and the contralateral left side was preserved as a control. The muscle hypertrophy capacity significantly decreased by 95% in the 9 Gy, 48% in the 5 Gy, and 36% in the 2.5 Gy groups. Furthermore, stem/progenitor cells in the muscle were enzymatically isolated and fractionated into non-sorted bulk cells, CD45-/34-/29+ (Sk-DN), and CD45-/34+ (Sk-34) cells, and myogenic capacity was confirmed by the presence of Pax7+ and MyoD+ cells in culture. Myogenic capacity also declined significantly in the Bulk and Sk-DN cell groups in all three TBI conditions, possibly implying that skeletal muscles are more susceptible to TBI than bone marrow. However, interstitial Sk-34 cells were insusceptible to TBI, retaining their myogenic/proliferative capacity.
Keywords: myogenic response; proliferative capacity; satellite cells; stem cells.