In this paper, we report the synthesis of block and random copolymers of 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) and methyl methacrylate (MMA), with different AMPS feed ratios. These solution-processable copolymers with strongly sulfonated acid groups resulted in membranes with tunable ion exchange (IEC) and water absorption capacities. AFM images confirmed the microphase separation of PAMPS-b-PMMA-1:1 block copolymer membrane, annealed under the appropriate conditions. The resulting copolymers from the random combination of a 1:1 molar ratio of AMPS and MMA monomers are effective at enhancing the esterification conversion of acetic acid, when compared with a reaction catalyzed by PAMPS-b-PMMA block copolymers and the previously studied catalytic membranes. With the PAMPS-co-PMMA-1:1 membrane, the esterification reaction using acetic acid achieved 85% isopropyl acetate. These results are closely correlated with the increase in IEC (2.63 mmol H+g-1) and the relationship between weight loss (20.3%) and swelling degree (68%) in 2-propanol.
Keywords: block copolymers; catalytic membranes; esterification; isopropyl acetate; random copolymers.