The aim of this study was to prepare a liposomal formulation of a model drug (budesonide) for colonic delivery by incorporating a bile salt (sodium glycocholate, SGC) into liposomes followed by coating with a pH-responsive polymer (Eudragit S100, ES100). The role of the SGC is to protect the liposome from the emulsifying effect of physiological bile salts, while that of ES100 is to protect the liposomes from regions of high acidity and enzymatic activity in the stomach and small intestine. Vesicles containing SGC were prepared by two preparation methods (sonication and extrusion), and then coated by ES100 (ES100-SGC-Lip). ES100-SGC-Lip showed a high entrapment efficiency (>90%) and a narrow size distribution (particle size = 275 nm, polydispersity index < 0.130). The characteristics of liposomes were highly influenced by the concentration of incorporated SGC. The lipid/polymer weight ratio, liposome charge, liposome addition, and mixing rate were critical factors for efficient and uniform coating. In vitro drug release studies in various simulated fluids indicate a pH-dependent dissolution of the coating layer, and the disintegration process of ES100-SGC-Lip was evaluated. In conclusion, the bile salt-containing ES100-coated liposomal formulation has potential for effective oral colonic drug delivery.
Keywords: colonic-targeted delivery; pH sensitive polymer; polymer-coated liposomes; sodium glycocholate.