The use of repellents is considered an alternative against biting insects, including Lutzomyia longipalpis (Diptera: Psychodidae), the main vector of the protozoan Leishmania infantum, visceral leishmaniasis's (VL) etiologic agent in the Americas. This study aimed to evaluate the repellent efficacy of icaridin nanostructured solution applied on cotton knitting fabric against L. longipalpis. Arm-in-cage tests were performed in eight volunteers at different concentrations (5%, 10%, 25%, and 50%), using L. longipalpis (n = 30). The bioassay was performed in 1, 24, 48, 72, 96, 120, and 144 h after impregnation and one test after washing the fabrics with icaridin. The total repellency rate (%R) > 95% was used as a reference to define a minimum effective concentration (MEC). The results revealed that the insects' landing mean decreased significantly in different icaridin concentrations, compared with the control tests (p < 0.05) and the 25% and 50% concentrations compared to lower concentration (5%) (p < 0.05). The higher concentrations (25% and 50%) provided longer complete protection times (CPTs) with 120 and 144 h of protection, respectively and the %R of 100% for 72 and 96 h after impregnation, respectively. The 25% was the MEC (%R Total = 98.18%). Our results indicate, for the first time, that icaridin nanostructured solution applied on cotton knitting fabric proved to be an efficient repellent against L. longipalpis with the presence of repellent action even after washing. The concentration of 25% showed better efficiency and may become an efficient method for L. longipalpis biting control.
Keywords: Behavior; Cotton knitting fabric; Functionalization; Nanotechnology; Sand flies; Visceral leishmaniasis.
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.