Emerging evidence suggests that STK11 alterations, frequently found in non-small-cell lung cancers, may be prognostic and/or predictive of response to therapy, particularly immunotherapy. STK11 affects multiple important cellular pathways, and mutations lead to tumor growth by creating an immunosuppressive and altered metabolic environment through changes in AMPK, STING, and vascular endothelial growth factor pathways. We illustrate the questions surrounding STK11 genomic alteration in NSCLC with a case series comprising six United States Veterans from a single institution. We discuss the history of STK11, review studies on its clinical impact, and describe putative mechanisms of how loss of STK11 might engender resistance to immunotherapy or other therapies. While the exact impact of STK11 alteration in non-small-cell lung cancer remain to be fully elucidated, future research and ongoing clinical trials will help us better understand its role in cancer development and devise more effective treatment strategies.
Keywords: Adenocarcinoma; Adenosine monophosphate-activated protein kinase (AMPK); Epidemiology; Immunotherapy; KRAS mutation; Non–small-cell lung cancer; Prognosis; STING pathway; STK11; TP53; mTOR.
Published by Elsevier Inc.