Background: Colon adenocarcinoma (COAD) is one of the major varieties of malignant tumors threatening human health today. Immune checkpoint inhibitors (ICIs) have recently begun to emerge as an effective option for the treatment of COAD patients, but not all patients can benefit from ICI treatment. Previous studies have suggested that ICIs boast significant clinical effects on patients with microsatellite instability-high (MSI-H), while conversely patients with microsatellite-stable/microsatellite instability-low (MSS/MSI-L) have shown limited response.
Methods: We used ATAC-seq, RNA-seq, and mutation data from The Cancer Genome Atlas Colon adenocarcinoma (TCGA-COAD) cohort to perform multi-omics differential analysis on COAD samples with different MSI statuses, then further screened genes by additionally combining these results with survival analysis. We analyzed the effects of the screened genes on the tumor microenvironment and immunogenicity of COAD patients, and subsequently determined their influence on the efficacy of ICIs in COAD patients using a series of predictive indexes.
Results: Twelve genes were screened in the TCGA-COAD cohort, and after the combined survival analysis, we identified ATOH1 as having significant effects. ATOH1 is characterized by high chromatin accessibility, high expression, and high mutation in COAD patients in the MSI-H group. COAD patients with high ATOH1 expression are associated with a better prognosis, unique immune microenvironment, and higher efficacy in ICI treatment. Enrichment analysis showed that COAD patients with high ATOH1 expression displayed significant upregulation in their humoral immunity and other related pathways.
Conclusions: We speculate that ATOH1 may influence the efficacy of ICIs therapy in patients with COAD by affecting the immune microenvironment and immunogenicity of the tumor.
Keywords: ATOH1; Chromatin accessibility; Colon adenocarcinoma; Immune checkpoint inhibitors; Microsatellite instability; Tumor microenvironment.
© 2022. The Author(s).