Background: Esophageal squamous cell carcinoma (ESCC) is a common malignant tumor of the digestive tract with a poor prognosis. The tumor microenvironment (TME) is mainly composed of tumor cells, stromal cells, and immune cells and plays an important role in ESCC development. There are substantial differences in tumor purity among different parts of ESCC tissues, consisting of distinct immune and stromal cells and variations in the status of hypoxia. Thus, prognostic models of ESCC based on bioinformatic analysis of tumor tissues are unreliable.
Method: Differentially expressed genes (DEGs) independent of tumor purity and hypoxia were screened by Spearman correlation analysis of public ESCC cohorts. Subsequently, the DEGs were subjected to Cox regression analysis. Then, we constructed a protein-protein interaction (PPI) network of the DEGs using Cytoscape. Intersection analysis of the univariate Cox and PPI results indicated that heparanase (HPSE), an endo-β-D-glucuronidase capable of cleaving heparan sulfate side chains, was a predictive factor. Gene set enrichment analysis (GSEA) was used to reveal the potential function of HPSE, and single-cell sequencing data were analyzed to evaluate the distribution of HPSE in immune cells. Furthermore, a human ESCC tissue microarray was used to validate the expression and prognostic value of HPSE.
Result: We found that HPSE was downregulated in ESCC tissues and was not correlated with tumor purity or hypoxia status. HPSE is involved in multiple biological processes. ESCC patients with low HPSE expression in cancerous tissues exhibited poor prognosis.
Conclusions: These results indicate that low HPSE expression in cancerous tissues correlates with poor prognosis in patients with ESCC. HPSE is a novel prognostic biomarker independent of tumor purity and hypoxia status in ESCC.
Keywords: Esophageal squamous cancer; Hypoxia; Immunohistochemical staining; Tumor purity.
© 2022. The Author(s).