Background: The COVID-19 pandemic has become the world's main life-threatening challenge in the third decade of the twenty-first century. Numerous studies have been conducted on SARS-CoV2 virus structure and pathogenesis to find reliable treatments and vaccines. The present study aimed to evaluate the immune-phenotype and IFN-I signaling pathways of COVID-19 patients with mild and severe conditions.
Material and methods: A total of 100 COVID-19 patients (50 with mild and 50 with severe conditions) were enrolled in this study. The frequency of CD4 + T, CD8 + T, Th17, Treg, and B lymphocytes beside NK cells was evaluated using flow cytometry. IFN-I downstream signaling molecules, including JAK-1, TYK-2, STAT-1, and STAT-2, and Interferon regulatory factors (IRF) 3 and 7 expressions at RNA and protein status were investigated using real-time PCR and western blotting techniques, respectively. Immune levels of cytokines (e.g., IL-1β, IL-6, IL-17, TNF-α, IL-2R, IL-10, IFN-α, and IFN-β) and the existence of anti-IFN-α autoantibodies were evaluated via enzyme-linked immunosorbent assay (ELISA).
Results: Immune-phenotyping results showed a significant decrease in the absolute count of NK cells, CD4 + T, CD8 + T, and B lymphocytes in COVID-19 patients. The frequency of Th17 and Treg cells showed a remarkable increase and decrease, respectively. All signaling molecules of the IFN-I downstream pathway and IRFs (i.e., JAK-1, TYK-2, STAT-1, STAT-2, IRF-3, and IRF-7) showed very reduced expression levels in COVID-19 patients with the severe condition compared to healthy individuals at both RNA and protein levels. Of 50 patients with severe conditions, 14 had anti-IFN-α autoantibodies in sera. Meanwhile, this result was 2 and 0 for patients with mild symptoms and healthy controls, respectively.
Conclusion: Our results indicate a positive association of the existence of anti-IFN-α autoantibodies and immune cells dysregulation with the severity of illness in COVID-19 patients. However, comprehensive studies are necessary to find out more about this context. Video abstract.
Keywords: COVID-19; IFN-I; Illness severity; Immune-phenotype; Signaling pathway.
© 2022. The Author(s).