In the primary visual cortex (V1) inhibitory interneurons form a local circuit with excitatory pyramidal cells to produce distinct receptive field properties. Parvalbumin-expressing interneurons (Pvalb+) are the most common subclass of V1 interneurons, and studies of orientation tuning indicate they shape pyramidal stimulus selectivity by balancing excitation with inhibition relative to the spike threshold. The iceberg effect, where subthreshold responses have broader tuning than spiking responses, predicts that other receptive field properties besides orientation tuning should also be affected by this balance mediated by Pvalb+ cells. To test this, we measured receptive field size and visual latency of pyramidal cells while Pvalb+ activity was optogenetically increased. We found that amplifying Pvalb+ input to pyramidal cells significantly increased their latency and decreased their receptive field size, which corroborates the proposed role of Pvalb+ interneurons in sculpting pyramidal tuning by controlling cortical gain.
Keywords: Electrophysiology; Neural circuit; Optogenetics; Transgenic; Vision.
Copyright © 2022 Elsevier B.V. All rights reserved.