Objective: In adult brain tissue, oxygen levels typically remain in the normoxic zone, but status epilepticus results in hyperoxia, whereas brief self-terminating seizures lead to postictal hypoxia. The dynamic changes in oxygen levels and the underlying mechanisms are unknown in juveniles with febrile seizures.
Methods: Eight-day-old female and male rat pups were implanted with an electrode and oxygen-sensing optode in the hippocampus and then received once daily injections of lipopolysaccharide for 4 days to induce an immune response. Local partial pressure of oxygen (pO2 ) and local field potentials were recorded before, during, and after a heat-induced febrile seizure. Separate groups of pups received injections of vehicle or drugs targeting cyclooxygenase (COX)-1, COX-2, L-type calcium channels (LTCCs), and cannabinoid receptor type 1 (CB1) and transient receptor potential vanilloid-1 (TRPV1) receptors prior to febrile seizure induction to determine pO2 mechanisms. Following febrile seizures, a subset of pups were raised to young adulthood and then tested for learning impairments using the novel object recognition task.
Results: Febrile seizures resulted in predictable oxygen dynamics that were related to behavioral seizures and epileptiform activity. During a behavioral seizure, pO2 rapidly increased, rapidly decreased, and then returned to near baseline. When the behavioral seizure terminated, oxygen levels climbed into the hyperoxic zone during a time of prolonged epileptiform activity. When epileptiform activity terminated, oxygen levels slowly returned to baseline. A COX-1 antagonist prevented hyperoxia, whereas a COX-2 antagonist did not. An LTCC antagonist exacerbated hyperoxia. Boosting levels of an endocannabinoid also exacerbated hyperoxia, whereas blocking CB1 receptors and TRPV1 receptors reduced hyperoxia. Inhibiting TRPV1 receptors during a febrile seizure prevented learning deficits in young adult female rats.
Significance: Brain oxygenation during and following a febrile seizure has a distinct pattern and multiple mechanisms. Brain oxygen dynamics may be an important consideration in the development of treatments for febrile seizures.
Keywords: development; febrile seizures; hyperoxia; learning; neonatal vascular dynamics.
© 2022 International League Against Epilepsy.