Deletion of the P/Q-Type Calcium Channel from Serotonergic Neurons Drives Male Aggression in Mice

J Neurosci. 2022 Aug 24;42(34):6637-6653. doi: 10.1523/JNEUROSCI.0204-22.2022.

Abstract

Aggressive behavior is one of the most conserved social interactions in nature and serves as a crucial evolutionary trait. Serotonin (5-HT) plays a key role in the regulation of our emotions, such as anxiety and aggression, but which molecules and mechanisms in the serotonergic system are involved in violent behavior are still unknown. In this study, we show that deletion of the P/Q-type calcium channel selectively from serotonergic neurons in the dorsal raphe nuclei (DRN) augments aggressive behavior in male mice, while anxiety is not affected. These mice demonstrated increased induction of the immediate early gene c-fos and in vivo serotonergic firing activity in the DRN. The ventrolateral part of the ventromedial hypothalamus is also a prominent region of the brain mediating aggression. We confirmed a monosynaptic projection from the DRN to the ventrolateral part of the ventromedial hypothalamus, and silencing these projections with an inhibitory designer receptor exclusively activated by a designer drug effectively reduced aggressive behavior. Overall, our findings show that deletion of the P/Q-type calcium channel from DRN neurons is sufficient to induce male aggression in mice and regulating its activity may serve as a therapeutic approach to treat violent behavior.SIGNIFICANCE STATEMENT In this study, we show that P/Q-type calcium channel is mediating aggression in serotonergic neurons from the dorsal raphe nucleus via monosynaptic projections to the ventrolateral part of the ventromedial hypothalamus. More importantly, silencing these projections reduced aggressive behavior in mice and may serve as a therapeutic approach for treating aggression in humans.

Keywords: Cav2.1; P/Q-type channel; aggression; dorsal raphe; serotonergic system; ventromedial hypothalamus.