Satellite cell depletion does not affect diaphragm adaptations to hypoxia

J Appl Physiol (1985). 2022 Sep 1;133(3):637-646. doi: 10.1152/japplphysiol.00083.2022. Epub 2022 Jul 21.

Abstract

The diaphragm is the main skeletal muscle responsible for inspiration and is susceptible to age-associated decline in function and morphology. Satellite cells in diaphragm fuse into unperturbed muscle fibers throughout life, yet their role in adaptations to hypoxia in diaphragm is unknown. Given their continual fusion, we hypothesize that satellite cell depletion will negatively impact adaptations to hypoxia in the diaphragm, particularly with aging. We used the Pax7CreER/CreER:R26RDTA/DTA genetic mouse model of inducible satellite cell depletion to investigate diaphragm responses to hypoxia in adult (6 mo) and aged (22 mo) male mice. The mice were subjected to normobaric hypoxia at 10% [Formula: see text] or normoxia for 4 wk. We showed that satellite cell depletion had no effect on diaphragm muscle fiber cross-sectional area, fiber-type distribution, myonuclear density, or regulation of extracellular matrix in either adult or aged mice. Furthermore, we showed lower muscle fiber cross-sectional area with hypoxia and age (main effects), while extracellular matrix content was higher and satellite cell abundance was lower with age (main effect) in diaphragm. Lastly, a greater number of Pax3-mRNA+ cells was observed in diaphragm muscle of satellite cell-depleted mice independent of hypoxia (main effect), potentially as a compensatory mechanism for the loss of satellite cells. We conclude that satellite cells are not required for diaphragm muscle adaptations to hypoxia in either adult or aged mice.NEW & NOTEWORTHY Satellite cells show consistent fusion into diaphragm muscle fibers throughout life, suggesting a critical role in maintaining homeostasis. Here, we report identical diaphragm adaptations to hypoxia with and without satellite cells in adult and aged mice. In addition, we propose that the higher number of Pax3-positive cells in satellite cell-depleted diaphragm muscle acts as a compensatory mechanism.

Keywords: Pax3; aging; diaphragm; hypoxia; satellite cells.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adaptation, Physiological
  • Animals
  • Diaphragm
  • Hypoxia
  • Male
  • Mice
  • Muscle Fibers, Skeletal / physiology
  • Muscle, Skeletal / physiology
  • Satellite Cells, Skeletal Muscle* / physiology

Associated data

  • figshare/10.6084/m9.figshare.20212064.v1