Regional distribution and maturation of tau pathology among phenotypic variants of Alzheimer's disease

Acta Neuropathol. 2022 Dec;144(6):1103-1116. doi: 10.1007/s00401-022-02472-x. Epub 2022 Jul 23.

Abstract

Alzheimer's disease neuropathologic change (ADNC) is clinically heterogenous and can present with a classic multidomain amnestic syndrome or focal non-amnestic syndromes. Here, we investigated the distribution and burden of phosphorylated and C-terminally cleaved tau pathologies across hippocampal subfields and cortical regions among phenotypic variants of Alzheimer's disease (AD). In this study, autopsy-confirmed patients with ADNC, were classified into amnestic (aAD, N = 40) and non-amnestic (naAD, N = 39) groups based on clinical criteria. We performed digital assessment of tissue sections immunostained for phosphorylated-tau (AT8 detects pretangles and mature tangles), D421-truncated tau (TauC3, a marker for mature tangles and ghost tangles), and E391-truncated tau (MN423, a marker that primarily detects ghost tangles), in hippocampal subfields and three cortical regions. Linear mixed-effect models were used to test regional and group differences while adjusting for demographics. Both groups showed AT8-reactivity across hippocampal subfields that mirrored traditional Braak staging with higher burden of phosphorylated-tau in subregions implicated as affected early in Braak staging. The burden of phosphorylated-tau and TauC3-immunoreactive tau in the hippocampus was largely similar between the aAD and naAD groups. In contrast, the naAD group had lower relative distribution of MN423-reactive tangles in CA1 (β = - 0.2, SE = 0.09, p = 0.001) and CA2 (β = - 0.25, SE = 0.09, p = 0.005) compared to the aAD. While the two groups had similar levels of phosphorylated-tau pathology in cortical regions, there was higher burden of TauC3 reactivity in sup/mid temporal cortex (β = 0.16, SE = 0.07, p = 0.02) and MN423 reactivity in all cortical regions (β = 0.4-0.43, SE = 0.09, p < 0.001) in the naAD compared to aAD. In conclusion, AD clinical variants may have a signature distribution of overall phosphorylated-tau pathology within the hippocampus reflecting traditional Braak staging; however, non-amnestic AD has greater relative mature tangle pathology in the neocortex compared to patients with clinical amnestic AD, where the hippocampus had greatest relative burden of C-terminally cleaved tau reactivity. Thus, varying neuronal susceptibility to tau-mediated neurodegeneration may influence the clinical expression of ADNC.

Keywords: Alzheimer’s disease; Neurofibrillary tangles; Non-amnestic AD; Tau.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Alzheimer Disease* / pathology
  • Hippocampus / pathology
  • Humans
  • Neurofibrillary Tangles / pathology
  • Temporal Lobe / metabolism
  • tau Proteins / metabolism

Substances

  • tau Proteins