XAS and EPR in Situ Observation of Ru(V) Oxo Intermediate in a Ru Water Oxidation Complex

ChemElectroChem. 2022 Feb 11;9(3):e202101271. doi: 10.1002/celc.202101271. Epub 2021 Dec 27.

Abstract

In this study, we combine in situ spectroelectrochemistry coupled with electron paramagnetic resonance (EPR) and X-ray absorption spectroscopies (XAS) to investigate a molecular Ru-based water oxidation catalyst bearing a polypyridinic backbone [RuII(OH2)(Py2Metacn)]2+ . Although high valent key intermediate species arising in catalytic cycles of this family of compounds have remain elusive due to the lack of additional anionic ligands that could potentially stabilize them, mechanistic studies performed on this system proposed a water nucleophilic attack (WNA) mechanism for the O-O bond formation. Employing in situ experimental conditions and complementary spectroscopic techniques allowed to observe intermediates that provide support for a WNA mechanism, including for the first time a Ru(V) oxo intermediate based on the Py2Metacn ligand, in agreement with the previously proposed mechanism.

Keywords: catalyst; in situ electrochemistry; ruthenium; spectroelectrochemistry; water oxidation.