Lead (Pb2+) is a developmental neurotoxicant that causes alterations in the brain's excitation-to-inhibition (E/I) balance by disrupting the development of the GABAergic systems. These GABAergic disruptions have persistent neurobiological and neurobehavioral structure-function relationships that can be examined using animal models of Pb2+ exposure. Further, taurine, a GABA-AR agonist, has been shown to offer neuroprotection against neurodevelopmental Pb2+ exposure and senescence. The present study evaluated the effects of Pb2+ exposure (i.e., at 150 ppm and 1,000 ppm doses) on Long Evans hooded rats during the perinatal period of development on locomotor activity in the open field (OF) and anxiety-like behaviors in the elevated plus maze (EPM). This was followed by an examination of brain mass using an encephalization quotient (EQ) and isotropic fractionation (ITF) of total cells and the number of neurons and non-neuronal cells in the prefrontal cortex, hippocampus, and diencephalon. The results suggest that neurodevelopmental Pb2+ exposure caused persistent anxiety-like behaviors in both the OF and EPM with associated changes in EQ, but not ITF-determined cell density. Further, taurine treatment was observed to compensate for Pb2+ exposure in the behavioral assessments although precise neurobiological mechanisms remain unknown. Thus, more work is required to evaluate the role of taurine and other anxiolytic compounds in the alleviation of neurotoxicant-induced neurobehavioral syndromes and their associated neurobiological correlates.
Keywords: Anxiety-like behaviors; Developmental behavioral neurotoxicology; Developmental lead exposure; GABAergic systems; Hippocampus; Hyperactivity; Neuronal cell counts; Neurotoxicology; Prefrontal cortex.
© 2022. The Author(s), under exclusive license to Springer Nature Switzerland AG.