Microvillus inclusion disease (MVID), a lethal congenital diarrheal disease, results from loss of function mutations in the apical actin motor myosin VB (MYO5B). How loss of MYO5B leads to both malabsorption and fluid secretion is not well understood. Serum glucocorticoid-inducible kinase 1 (SGK1) regulates intestinal carbohydrate and ion transporters including cystic fibrosis transmembrane conductance regulator (CFTR). We hypothesized that loss of SGK1 could reduce CFTR fluid secretion and MVID diarrhea. Using CRISPR-Cas9 approaches, we generated R26CreER;MYO5Bf/f conditional single knockout (cMYO5BKO) and R26CreER;MYO5Bf/f;SGK1f/f double knockout (cSGK1/MYO5B-DKO) mice. Tamoxifen-treated cMYO5BKO mice resulted in characteristic features of human MVID including severe diarrhea, microvillus inclusions (MIs) in enterocytes, defective apical traffic, and depolarization of transporters. However, apical CFTR distribution was preserved in crypts and depolarized in villus enterocytes, and CFTR high expresser (CHE) cells were observed. cMYO5BKO mice displayed increased phosphorylation of SGK1, PDK1, and the PDK1 target PKCι in the intestine. Surprisingly, tamoxifen-treated cSGK1/MYO5B-DKO mice displayed more severe diarrhea than cMYO5BKO, with preservation of apical CFTR and CHE cells, greater fecal glucose and reduced SGLT1 and GLUT2 in the intestine. We conclude that loss of SGK1 worsens carbohydrate malabsorption and diarrhea in MVID.
Keywords: CFTR; MVID; SGK1; diarrhea.