Oxidative dehydrogenation (ODH) of n-butane has the potential to efficiently produce butadiene without equilibrium limitation or coke formation. Despite extensive research efforts, single-pass butadiene yields are limited to <23% in conventional catalytic ODH with gaseous O2. This article reports molten LiBr as an effective promoter to modify a redox-active perovskite oxide, i.e., La0.8Sr0.2FeO3 (LSF), for chemical looping-oxidative dehydrogenation of n-butane (CL-ODHB). Under the working state, the redox catalyst is composed of a molten LiBr layer covering the solid LSF substrate. Characterizations and ab initio molecular dynamics (AIMD) simulations indicate that peroxide species formed on LSF react with molten LiBr to form active atomic Br, which act as reaction intermediates for C─H bond activation. Meanwhile, molten LiBr layer inhibits unselective CO2 formation, leading to 42.5% butadiene yield. The redox catalyst design strategy can be extended to CL-ODH of other light alkanes such as iso-butane conversion to iso-butylene, providing a generalized approach for olefin production.