Carbon and climate implications of rewetting a raised bog in Ireland

Glob Chang Biol. 2022 Nov;28(21):6349-6365. doi: 10.1111/gcb.16359. Epub 2022 Aug 15.

Abstract

Peatland rewetting has been proposed as a vital climate change mitigation tool to reduce greenhouse gas emissions and to generate suitable conditions for the return of carbon (C) sequestration. In this study, we present annual C balances for a 5-year period at a rewetted peatland in Ireland (rewetted at the start of the study) and compare the results with an adjacent drained area (represents business-as-usual). Hydrological modelling of the 230-hectare site was carried out to determine the likely ecotopes (vegetation communities) that will develop post-rewetting and was used to inform a radiative forcing modelling exercise to determine the climate impacts of rewetting this peatland under five high-priority scenarios (SSP1-1.9, SS1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5). The drained area (marginal ecotope) was a net C source throughout the study and emitted 157 ± 25.5 g C m-2 year-1 . In contrast, the rewetted area (sub-central ecotope) was a net C sink of 78.0 ± 37.6 g C m-2 year-1 , despite relatively large annual methane emissions post-rewetting (average 19.3 ± 5.2 g C m-2 year-1 ). Hydrological modelling predicted the development of three key ecotopes at the site, with the sub-central ecotope predicted to cover 24% of the site, the sub-marginal predicted to cover 59% and the marginal predicted to cover 16%. Using these areal estimates, our radiative forcing modelling projects that under the SSP1-1.9 scenario, the site will have a warming effect on the climate until 2085 but will then have a strong cooling impact. In contrast, our modelling exercise shows that the site will never have a cooling impact under the SSP5-8.5 scenario. Our results confirm the importance of rapid rewetting of drained peatland sites to (a) achieve strong C emissions reductions, (b) establish optimal conditions for C sequestration and (c) set the site on a climate cooling trajectory.

Keywords: carbon dioxide; climate mitigation; methane; peat; radiative forcing; rewetting.

MeSH terms

  • Carbon Dioxide / analysis
  • Carbon*
  • Greenhouse Gases*
  • Ireland
  • Methane / analysis
  • Soil
  • Wetlands

Substances

  • Greenhouse Gases
  • Soil
  • Carbon Dioxide
  • Carbon
  • Methane