Bioinformatics analysis and experimental verification of Notch signalling pathway-related miRNA-mRNA subnetwork in extracellular vesicles during Echinococcus granulosus encystation

Parasit Vectors. 2022 Jul 30;15(1):272. doi: 10.1186/s13071-022-05391-8.

Abstract

Background: Encystation of the protoscoleces (PSCs) of Echinococcus granulosus is the main cause of secondary hydatid dissemination in the intermediate host. Extracellular vesicles (EVs) can transfer miRNAs into parasite cells to regulate mRNA expression. However, loading of developmental pathway-related miRNAs, such as those related to the Notch signalling pathway in EVs is unclear. Thus, we screened the miRNA-mRNA subnetwork involved in the Notch pathway during E. granulosus encystation in vitro and assessed changes in expression in the parasite and EVs.

Methods: mRNAs and miRNAs differentially expressed (DE) between PSCs and microcysts (MCs) were screened using high-throughput sequencing. DE mRNAs obtained from transcriptome analysis were intersected with mRNAs predicted to be targets of the conserved DE miRNAs of a small RNA library. DE miRNA functions were analysed using public databases, and a miRNA-mRNA subnetwork related to the Notch pathway was established. Notch pathway-related mRNA and miRNA expression of worms and EVs at different times was verified.

Results: In total, 1445 DE mRNAs between MCs and PSCs were screened after the intersection between 1586 DE mRNAs from the transcriptome and 9439 target mRNAs predicted using 39 DE miRNAs from the small RNA library. The DE mRNAs were clustered into 94 metabolic pathways, including the Notch pathway. Five DE miRNAs, including the most significantly expressed new DE miRNA, egr-new-mir0694-3p, corresponding to four target mRNAs (EgrG_000892700, EgrG_001029400, EgrG_001081400 and EgrG_000465800) were all enriched in the Notch pathway. The expression of the above mRNAs and miRNAs was consistent with the results of high-throughput sequencing, and the expression of each miRNA in EVs was verified. Annotated as ADAM17/TACE in the Notch pathway, EgrG_000892700 was down-regulated during PSC encystation. egr-miR-4989-3p and egr-miR-277a-3p expression in EVs after encystation was nearly five times that in EVs before encystation, which might regulate the expression of EgrG_000892700.

Conclusions: Five miRNAs corresponding to four target mRNAs may be involved in regulating the Notch pathway during the PSC encystation. EVs may regulate the expression of EgrG_000892700 in PSCs because of continuous targeting of egr-miR-4989-3p and egr-miR-277a-3p and participate in the regulation the Notch pathway. The study might expand new ideas for blocking the secondary infection of E. granulosus PSCs via EVs miRNAs.

Keywords: Echinococcus granulosus; Encystation; Extracellular vesicles; Notch signalling pathway; Protoscolex; miRNA.

MeSH terms

  • Animals
  • Computational Biology
  • Echinococcus granulosus* / metabolism
  • Extracellular Vesicles* / genetics
  • Extracellular Vesicles* / metabolism
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism

Substances

  • MicroRNAs
  • RNA, Messenger