Background: Photodynamic therapy could be one approach to treat colorectal cancer though resistance leads to failure of therapy. Akt activation is a cellular survival response to photodynamic therapy and is also a reason for resistance. Thus, inhibition of Akt is a strategy to decrease resistance. Akt interacts with connexin 43, another protein involved in photodynamic therapy resistance. Connexin 43 is widely expressed in different human tissues and has a complex role in tumor development. However, the mechanism of inhibition of Akt by connexin 43 that sensitizes colorectal cancer cells to photodynamic therapy needs further investigation.
Methods: In this study, two colorectal cancer cells with low phosphorylated connexin 43 level were used to explore this mechanism. LY294002 was used as an Akt inhibitor, and connexin 43-pCMV3 was transfected into cells to increase connexin 43 expression.
Results: Akt and connexin 43 inhibit each other in both colorectal cancer cell lines. In vitro and in vivo experiments showed that LY294002 and connexin 43 transfection sensitized cells to hematoporphyrin-Photodynamic therapy. LY294002 increased the sensitivity of cells to photodynamic therapy with a pronounced effect in cells with high expression levels of connexin 43.
Conclusions: Connexin 43 should be considered an important factor in increasing the phototoxicity of photodynamic therapy in colorectal cancer through Akt inhibition.
Keywords: Akt activation; Connexin 43; Photodynamic Therapy; Resistance.
Copyright © 2022. Published by Elsevier B.V.