Innate immune cells recognize and elicit responses against pathogens by integrating signals from different types of cell-surface receptors. How the receptors interact in the membrane to enable their signaling crosstalk is poorly understood. Here, we reveal the nanoscale organization of TLR2 and Dectin-1, a receptor pair known to cooperate in regulating antifungal immunity, through their synergistic signaling crosstalk at macrophage cell membranes. Using super-resolution single-molecule localization microscopy, we show that discrete noncolocalized nanoclusters of Dectin-1 and TLR2 are partially overlapped during their synergistic crosstalk. Compared to when one type of receptor is activated alone, the simultaneous activation of Dectin-1 and TLR2 leads to a higher percentage of both receptors being activated by their specific ligands and consequently an increased level of tyrosine phosphorylation. Our results depict, in nanoscale detail, how Dectin-1 and TLR2 achieve synergistic signaling through the spatial organization of their receptor nanoclusters.