Trend estimation and short-term forecasting of COVID-19 cases and deaths worldwide

Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2112656119. doi: 10.1073/pnas.2112656119. Epub 2022 Aug 3.

Abstract

Since the beginning of the COVID-19 pandemic, many dashboards have emerged as useful tools to monitor its evolution, inform the public, and assist governments in decision-making. Here, we present a globally applicable method, integrated in a daily updated dashboard that provides an estimate of the trend in the evolution of the number of cases and deaths from reported data of more than 200 countries and territories, as well as 7-d forecasts. One of the significant difficulties in managing a quickly propagating epidemic is that the details of the dynamic needed to forecast its evolution are obscured by the delays in the identification of cases and deaths and by irregular reporting. Our forecasting methodology substantially relies on estimating the underlying trend in the observed time series using robust seasonal trend decomposition techniques. This allows us to obtain forecasts with simple yet effective extrapolation methods in linear or log scale. We present the results of an assessment of our forecasting methodology and discuss its application to the production of global and regional risk maps.

Keywords: COVID-19; forecasting; seasonal decomposition; trend estimation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • COVID-19* / mortality
  • Epidemiological Monitoring*
  • Forecasting
  • Humans
  • Pandemics*
  • Time Factors