Valence-Inverted States of Nickel(II) Complexes Perform Facile C-H Bond Activation

J Am Chem Soc. 2022 Aug 17;144(32):14607-14613. doi: 10.1021/jacs.2c03835. Epub 2022 Aug 4.

Abstract

Valence-inverted reactivity (VIR) is discovered here through high-level computations of excited states of Ni(II) complexes that are generated by triplet energy transfer. For example, the so-generated 3[(Ar)(bpy)NiII(Br)] species possesses a valence-inverted occupancy, dxy1dxz1dx2-y22, wherein the uppermost dx2-y2 orbital is metal-ligand antibonding. This state promotes C-H bond activation of THF and its cross-coupling to the aryl ligand. Thus, due to the metal-ligand antibonding character of dx2-y2, the dxy1dx2-y22 subshell opens a Ni-coordination site by shifting the bidentate bipyridine ligand to monodentate plus a dangling pyridine. The tricoordinate Ni(II) intermediate inserts into a C-H bond of THF, transfers a proton to the dangling pyridine moiety, and eventually generates an arylated THF by reductive-coupling. The calculated high kinetic isotope effect is in accord with experiment, both revealing C-H activation. The VIR pattern is novel, its cross-coupling reaction is highly useful, and it is generally expected to occur in other d8 complexes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ligands
  • Models, Molecular
  • Nickel* / chemistry
  • Protons*
  • Pyridines

Substances

  • Ligands
  • Protons
  • Pyridines
  • Nickel