Tractography indicates lateralized differences between trigeminal and olfactory pathways

Neuroimage. 2022 Nov 1:261:119518. doi: 10.1016/j.neuroimage.2022.119518. Epub 2022 Aug 1.

Abstract

Odorous sensations are based on trigeminal and olfactory perceptions. Both trigeminal and olfactory stimuli generate overlapping as well as distinctive activations in the olfactory cortex including the piriform cortex. Orbitofrontal cortex (OFC), an integrative center for all senses, is directly activated in the presence of olfactory stimulations. In contrast, the thalamus, a very important midbrain structure, is not directly activated in the presence of odors, but rather acts as a relay for portions of olfactory information between primary olfactory cortex and higher-order processing centers. The aims of the study were (1) to examine the number of streamlines between the piriform cortex and the OFC and also between the piriform cortex and the thalamus and (2) to explore potential correlations between these streamlines and trigeminal and olfactory chemosensory perceptions. Thirty-eight healthy subjects were recruited for the study and underwent diffusion MRI using a 3T MRI scanner with 67 diffusion directions. ROIs were adapted from two studies looking into olfaction in terms of functional and structural properties of the olfactory system. The "waytotal number" was used which corresponds to number of streamlines between two regions of interests. We found the number of streamlines between the piriform cortex and the thalamus to be higher in the left hemisphere, whereas the number of streamlines between the piriform cortex and the OFC were higher in the right hemisphere. We also found streamlines between the piriform cortex and the thalamus to be positively correlated with the intensity of irritating (trigeminal) odors. On the other hand, streamlines between the piriform cortex and the OFC were correlated with the threshold scores for these trigeminal odors. This is the first studying the correlations between streamlines and olfactory scores using tractography. Results suggest that different chemosensory stimuli are processed through different networks in the chemosensory system involving the thalamus.

Keywords: Diffusion MRI; Orbitofrontal cortex; Piriform cortex; Probabilistic tractography; Thalamus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Humans
  • Magnetic Resonance Imaging
  • Odorants
  • Olfactory Cortex* / diagnostic imaging
  • Olfactory Pathways / diagnostic imaging
  • Olfactory Perception*
  • Piriform Cortex*