Since its atomically precise synthesis in recent experiments, the carboncone molecule presents a novel example of discrete nanocarbons with promising applications, but little is known yet about its chemical properties. In this work, we present a comprehensive computational study on the hydrogenation of carboncone with a varying number of added H atoms (from 1 to 12). Unlike planar benzenoid hydrocarbons, carboncone prefers that all H atoms be added to its external, convex surface. The previous topology-based model for hydrogenated fullerenes and benzenoid hydrocarbons is shown to be no longer valid for carboncone. We here propose an extended model capable of predicting the hydrogenation regioselectivity for carboncone, which is largely governed by π delocalization. Yet the H···H repulsion at rim sites also plays an important role in adduct stability. Interestingly, some preferred addition patterns can be understood by counting the size of intact π rings upon H addition. These findings may provide insightful guidance to the functionalization of carboncones and related nanocarbons.