The study aims to assess the antihemolytic and antioxidant activities of geraniol versus 2, 2'-azobis, 2-amidinopropane dihydro-chloride- (AAPH-) induced oxidative damage and hemolysis to erythrocytes and its anti-inflammatory potential against lipopolysaccharide- (LPS-) induced inflammation in white blood cells (WBCs) with a focus on its integrated computational strategies against different targeted receptors participating in inflammation and coagulation. The rats' erythrocyte suspension was incubated with different geraniol concentrations. Molecular docking and simulation were used to explore the possible interaction patterns of geraniol against the potential targeted proteins for therapeutic screening. The results displayed that geraniol had a prolonged noteworthy effect on activated partial thromboplastin time and thromboplastin time. Geraniol displayed strong antioxidant effects via reduced malondialdehyde (MDA) formation and increased GSH level and SOD activity. We observed dose-dependent prevention of K+ ion leakage along with a remarkable decline of hemolysis in erythrocytes pretreated with geraniol. Geraniol 100 µg/mL and diclofenac 100 µM were nontoxic to WBCs. Geraniol significantly reduces the expression and release of cellular pro-inflammatory factors TNF-α, IL-1β, IL-8, and nitric oxide, accompanied by a significant upregulation of gene expression of anti-inflammatory cytokine IL-10 in LPS-induced WBCs compared to nontreated cells. It demonstrates a much stronger inhibition potential than diclofenac in terms of inflammation inhibition. When comparing molecular docking and simulation data, current work showed that geraniol has a good affinity toward apoptosis signal-regulating kinase 1 (ASK1) and human P2Y12 receptors and could be developed as an antioxidant, anti-inflammatory, and anticoagulant medication in the future. Consequently, geraniol is recommended to have a defensive influence against oxidative stress, and hemolysis also could be developed as a promising anti-inflammatory, antioxidant, and anticoagulant medication.
Keywords: ASK1; Anti-inflammation; Anticoagulation; Geraniol; Hemolysis; Molecular docking; Phospholipase A2.
© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.