Phototheranostics stem from the recent advances in nanomedicines and bioimaging to diagnose and treat human diseases. Since tumors' diversity, heterogeneity, and instability limit the clinical application of traditional diagnostics and therapeutics, phototheranostics, which combine light-induced therapeutic and diagnostic modalities in a single platform, have been widely investigated. Numerous efforts have been made to develop phototheranostics for efficient light-induced antitumor therapeutics with minimal side effects. Herein, we review the fundamentals of phototheranostic nanomedicines with their biomedical applications. Furthermore, the progress of near-infrared fluorescence imaging and cancer treatments, including photodynamic therapy and photothermal therapy, along with chemotherapy, immunotherapy, and gene therapy, are summarized. This review also discusses the opportunities and challenges associated with the clinical translation of phototheranostics in pan-cancer research. Phototheranostics can pave the way for future research, improve the quality of life, and prolong cancer patients' survival times.
Keywords: Cancer therapy; Fluorescence; Image-guided gene therapy; Multifunctional Nanoparticles; Near-infrared; Photodynamic therapy; Photoimmunotherapy; Phototheranostics; Photothermal therapy.
Copyright © 2022 Elsevier B.V. All rights reserved.