Background: Immunosuppressive tumor immune microenvironment (TIME) lowers immunotherapy effectiveness. Additionally, low penetration efficiency and unpredictable drug release in tumor areas restrict tumor therapy.
Methods: A triblock copolymeric micelle (NanoPCPT+PIMDQ) was developed to carry the chemotherapeutic drug camptothecin (CPT) and the TLR7/8 agonist 1-(4-(aminomethyl)benzyl)-2-butyl-1H-imidazo[4,5-c] quinoline-4-amine (IMDQ) to achieve deep tumor penetration and on-demand drug release by responding to acid and reduction stimuli sequentially. The synergistic antitumour efficacy of NanoPCPT+PIMDQ was assessed both in vitro and in vivo.
Results: NanoPCPT+PIMDQ is composed of a hydrophilic PEG(polyethylene glycol) outer layer, an acid-sensitive EPEMA middle layer, and a drug inner core. Upon intratumoral injection, (i) NanoPCPT+PIMDQ first responds to the acidic tumor microenvironment and disintegrates to PIMDQ and PCPT, penetrating deep regions of the tumor; (ii) tumor cells are killed by the released CPT; (iii) DCs are activated by PIMDQ to increase the infiltration of cytotoxic T lymphocyte (CTL); and (iv) both downregulated Foxp3+ Tregs by CPT and repolarized M2 macrophages by PIMDQ can relieve the TIME.
Conclusion: This pH/GSH-responsive triblock polymer-drug conjugate reduces immunosuppression and enhances the infiltration of CTLs by codelivering CPT and IMDQ in a controllable manner, providing a promising platform for synergistic tumor chemoimmunotherapy.
Keywords: Chemoimmunotherapy; Regulatory T cells; TLR7/8 agonist; Triblock copolymeric nanomicelles; pH/GSH sequential response.
© 2022. The Author(s).