Generating random numbers plays an important role in many scientific applications. Compared to pseudorandom number generators, a quantum device is capable of generating true random numbers by the laws of quantum mechanics. However, information-theoretical secure random numbers are regularly based on a perfect device model, which may deviate from a real-world device. To close this gap, we propose a quantum random number generation protocol and experimentally demonstrate it. In our protocol, we make no assumptions about the source. Some reasonable assumptions on the trusted two-dimensional measurement are needed, but we do not require a detailed characterization. Even if considering the most general quantum attack and using the general sources, we achieve a randomness generation rate of over 1 Mbps with a universal composable security parameter of 10^{-10}.