Microplastics (MPs), an emerging pollutant, are of global concern due to their wide distribution and large quantities. In addition to MPs themselves, various additives within MPs (such as plasticizers, flame retardants, antioxidants and heavy metals) may also have harmful effects on the environment. Most of these additives are physically bound to plastics and can therefore be leached from the plastic and released into the environment. Aging of MPs in the actual environment can affect the migration and release of additives, further increasing the ecotoxicological risk of additives to organisms. This work reviews the functions of several commonly used additives in MPs, and summarizes the representative characterization methods. Furthermore, the migration and leaching of additives in the human environment and marine environment are outlined. As aging promotes the internal chain breaking of MPs and the increase of specific surface area, it in turn stimulates the release of additives. The hazards of additive exposure have been elucidated, and various studies from the laboratory have shown that more toxic additives such as phthalates and brominated flame retardants can disrupt a variety of biological processes in organisms, including metabolism, skeletal development and so on. Increase of MPs ecological risk caused by the leaching of toxic additives is discussed, especially under the effect of aging. This study presents a systematic summary of various functional and environmental behaviors of additives in plastics, using weathering forces as the main factor, which helps to better assess the environmental impact and potential risks of MPs.
Keywords: Additives; Aging; Ecotoxicity; Microplastics; Migration.
Copyright © 2022 Elsevier B.V. All rights reserved.