Metal-organic complexes with radical characteristics are unique species attracting immense attention in recent years due to their peculiar properties and promising applicability in a wide variety of innovative research fields. However, the reported complexes typically do not exceed diradicality. This study systematically investigates a series of square planar neutral Ni-bis(1,2-dithiolene) and Ni-bis(1,2-dioxolene) complexes with linear, branched, and macrocyclic configurations via ab initio calculations. The linear Ni-complexes display strong singlet diradical characters, while their branched counterparts can also exhibit moderate singlet multiradical characters. Importantly, the macrocyclic Ni-complexes can possess extremely strong singlet multiradical characters up to dodeca-radicality along with their global antiaromaticity and hence strong induced ring current in the presence of an external magnetic field, ascribed to the localization of unpaired α and β electrons residing in the highest few molecular orbitals at different molecular sites, minimizing their coupling and annihilation. Our work represents the first indication in the rational design of novel multiradical neutral antiaromatic macrocyclic complexes for potential applications in molecular machines and electronic devices.