Background: Diabetic kidney disease (DKD) is one of the most common complications of diabetes, with approximately 30-40% of patients with type 1 diabetes mellitus and 20% of patients with type 2 diabetes mellitus eventually developing DKD. If DKD is not controlled in the early clinical stage and proteinuria develops, the disease will progress to end-stage renal disease. The pathogenesis of DKD remains largely unknown and is multifactorial, likely due to interactions between genetic and environmental factors. Familial clustering also supports a critical role of hereditary factors in DKD. The development of gene detection technology has promoted the exploration of DKD susceptibility genes in different cohorts of patients with diabetes. Identifying susceptibility genes can provide insights into the pathogenesis of DKD, as well as a basis for its clinical diagnosis and therapy.
Results: Numerous candidate gene loci have been found to be associated with DKD, many of which play critical regulatory roles in the pathogenesis of this disease, including genes involved in glycol-metabolism, lipid metabolism, the renin-angiotensin-aldosterone system, inflammation and oxidative stress. In this review, we summarize the functions of several susceptibility genes involved in the development of DKD.
Conclusion: Based on our findings, we recommend that studying susceptibility gene polymorphisms can lead to a better understanding of the pathogenesis of DKD and could help prevent this disease or improve its outcomes.
Keywords: Diabetic kidney disease; Single-nucleotide polymorphism; Susceptibility gene.
© 2022. The Author(s), under exclusive licence to Springer Nature B.V.