Differences in coronary flow and myocardial metabolism at rest and during pacing between patients with obstructive and patients with nonobstructive hypertrophic cardiomyopathy

J Am Coll Cardiol. 1987 Jul;10(1):53-62. doi: 10.1016/s0735-1097(87)80159-6.

Abstract

Fifty patients with hypertrophic cardiomyopathy underwent invasive study of coronary and myocardial hemodynamics in the basal state and during the stress of pacing. The 23 patients with basal obstruction (average left ventricular outflow gradient, 77 +/- 33 mm Hg; left ventricular systolic pressure, 196 +/- 33 mm Hg, mean +/- 1 SD) had significantly lower coronary resistance (0.85 +/- 0.18 versus 1.32 +/- 0.44 mm Hg X min/ml, p less than 0.001) and higher basal coronary flow (106 +/- 20 versus 80 +/- 25 ml/min, p less than 0.001) in the anterior left ventricle, associated with higher regional myocardial oxygen consumption (12.4 +/- 3.6 versus 8.9 +/- 3.3 ml oxygen/min, p less than 0.001) compared with the 27 patients without obstruction (mean left ventricular systolic pressure 134 +/- 18 mm Hg, p less than 0.001). Myocardial oxygen consumption and coronary blood flow were also significantly higher at paced heart rates of 100 and 130 beats/min (the anginal threshold for 41 of the 50 patients) in patients with obstruction compared with those without. In patients with obstruction, transmural coronary flow reserve was exhausted at a heart rate of 130 beats/min; higher heart rates resulted in more severe metabolic evidence of ischemia with all patients experiencing chest pain, associated with an actual increase in coronary resistance. Patients without obstruction also demonstrated evidence of ischemia at heart rates of 130 and 150 beats/min, with 25 of 27 patients experiencing chest pain. In this group, myocardial ischemia occurred at significantly lower coronary flow, higher coronary resistance and lower myocardial oxygen consumption, suggesting more severely impaired flow delivery in this group compared with those with obstruction. Abnormalities in myocardial oxygen extraction and marked elevation in filling pressures during stress were noted in both groups. Thus, obstruction to left ventricular outflow is associated with high left ventricular systolic pressure and oxygen consumption and therefore has important pathogenetic importance to the precipitation of ischemia in patients with hypertrophic cardiomyopathy. Patients without obstruction may have greater impairment in coronary flow delivery during stress.

MeSH terms

  • Adult
  • Angiography
  • Cardiac Pacing, Artificial*
  • Cardiomyopathy, Hypertrophic / diagnostic imaging
  • Cardiomyopathy, Hypertrophic / metabolism
  • Cardiomyopathy, Hypertrophic / physiopathology*
  • Coronary Circulation*
  • Echocardiography
  • Electrocardiography
  • Female
  • Hemodynamics
  • Humans
  • Male
  • Middle Aged
  • Myocardium / metabolism*
  • Rest*