Dielectric breakdown of 2D muscovite mica

Sci Rep. 2022 Aug 18;12(1):14076. doi: 10.1038/s41598-022-18320-7.

Abstract

Localized electrical breakdown (BD) measurements are performed on 2D muscovite mica flakes of ~ 2 to 15 nm thickness using Conduction Atomic Force Microscopy (CAFM). To obtain robust BD data by CAFM, the probed locations are spaced sufficiently far apart (> 1 µm) to avoid mutual interference and the maximum current is set to a low value (< 1 nA) to ensure severe damage does not occur to the sample. The analyses reveals that 2D muscovite mica has high electrical breakdown strength (12 MV/cm or more) and low leakage current, comparable to 2D hexagonal boron nitride (h-BN) of similar thickness. However, a significant difference compared to h-BN is the very low current necessary to avoid catastrophic damage during the BD event, even for very thin (2-3 nm) flakes. Further, for mica the BD transient always appear to be very abrupt, and no progressive BD process was definitively observed. These marked differences between mica and h-BN are attributed to the poor thermal conductivity of mica.