The two human melatonin receptors MT1 and MT2, which belong to the G protein-coupled receptor (GPCR) family, are important drug targets with approved indications for circadian rhythm- and sleep-related disorders and major depression. Currently, most of the pharmacological studies were performed using [3H]melatonin and 2-[125I]iodomelatonin (2-[125I]-MLT) radioligands. Recently, NanoLuc-based bioluminescence resonance energy transfer (NanoBRET) monitoring competitive binding between fluorescent tracers and unmodified test compounds has emerged as a sensitive, nonradioactive alternative for quantifying GPCR ligand engagement on the surface of living cells in equilibrium and real time. However, developing such assays for the two melatonin receptors depends on the availability of fluorescent tracers, which has been challenging predominantly owing to their narrow ligand entry channel and small ligand binding pocket. Here, we generated a set of melatonergic fluorescent tracers and used NanoBRET to evaluate their engagement with MT1 and MT2 receptors that are genetically fused to an N-terminal luminogenic HiBiT-peptide. We identified several nonselective and subtype-selective tracers. Among the selective tracers, PBI-8238 exhibited high nanomolar affinity to MT1, and PBI-8192 exhibited low nanomolar affinity to MT2. The pharmacological profiles of both tracers were in good agreement with those obtained with the current standard 2-[125I]-MLT radioligand. Molecular docking and mutagenesis studies suggested the binding mode of PBI-8192 in MT2 and its selectivity over MT1. In conclusion, we describe the development of the first nonradioactive, real-time binding assays for melatonin receptors expressed at the cell surface of living cells that are likely to accelerate drug discovery for melatonin receptors.
© 2022 American Chemical Society.