Introduction: The aim of this study was to evaluate torsional, dynamic, and static cyclic fatigue resistance of the reciprocating One RECI (OR; Micromega, Besançon, France), WaveOne Gold (WOG; Dentsply Maillefer, Ballaigues, Switzerland), rotary One Curve (OC, MicroMega), and ProTaper Next X2 (PTN X2; Dentsply Sirona, Charlotte, NC) instruments.
Methods: A total of 120 OR (n = 30), WOG (n = 30), OC (n = 30), and PTN X2 (n = 30) nickel-titanium instruments were used. Torque and rotation angle until failure under static torsion loading were measured according to ISO 3630-1. Static and dynamic fatigue resistance was measured as the time to fracture in an artificial stainless steel canal with a 60° angle and 5-mm radius of curvature at intracanal temperature. The results were analyzed with 1-way analysis of variance and the post hoc Tukey test. The alpha-type error was set at 5%. Fracture instruments from torsion and fatigue tests were examined with a scanning electron microscope.
Results: OR showed higher static fatigue resistance and rotation angle at fracture than WOG, OC, and PTN X2 (P < .05). WOG exhibited higher torsional resistance than the others (P < .05). The cyclic fatigue tests in dynamic mode had higher TTF than static for the PTN X2 and WOG groups (P < .05). In the dynamic tests, OR and WOG showed higher TTF than OC and PTN X2 (P < .05).
Conclusions: Under these experimental conditions, One RECI exhibited suitable mechanical properties with the highest cyclic fatigue resistance and angle of rotation among the tested instruments.
Keywords: Continuous rotation; One RECI; cyclic fatigue resistance; reciprocating motion; torsional resistance.
Copyright © 2022 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.