Taxonomy in Bufonidae witnessed notable transformations. Bufotes viridis and Epidalea calamita, previously included in genus Bufo, were relocated in other genera, while the genus Bufo was restricted to members of the earlier Bufo bufo group. On the other hand, Bufo bufo sensu lato now includes four species: Bufo bufo, Bufo spinosus, Bufo verrucosissimus and Bufo eichwaldi. In this study, we examined three species of three Bufonidae genera (B. spinosus, B. viridis and E. calamita) by conventional (C-banding and Ag-NOR staining) and molecular (in situ hybridization with probes for telomeric repeats and rDNA loci, and genomic in situ hybridization (GISH)) cytogenetic methods. C-banding patterns are reported for the first time for B. spinosus and E. calamita populations from Iberian Peninsula and for B. viridis from Greece, and reveal several differences with the reported C-banded karyotypes described for other European populations of these species. Silver staining shows size heteromorphisms of the signals at the Nucleolar Organizing Region (NOR). By contrast, FISH with ribosomal probes only reveal size heteromorphism of rDNA sequences in E. calamita, suggesting that the differences observed after silver staining in B. spinosus and B. viridis should be attributed to differences in chromosomal condensation and/or gene activity rather than to differences in the copy number for ribosomal genes. Regarding telomeric repeats, E. calamita is the only species with interstitial telomeric sequences (ITS) located on centromeric regions, probably originated by accumulation of telomeric sequences in the centromeric heterochromatin. Finally, we analyzed the composition and distribution of repetitive sequences by genome in situ hybridization. These experiments reveal the accumulation of repetitive sequences in centromeric regions of the three species, although these sequences are not conserved when species from different genera are compared.
Keywords: C-banding; FISH; amphibian; bufonidae; chromosome evolution; genomic in situ hybridization (GISH); interstitial telomeric sequences (ITS); nucleolar organizing region (NOR); rDNA.