Sulfur quantum dots (SQDs) are a kind of pure elemental quantum dots, which are considered as potential green nanomaterials because they do not contain heavy metal elements and are friendly to biology and environment. In this paper, SQDs with size around 2 nm were synthesized by a microwave-assisted method using sulfur powder as precursor. The SQDs had the highest emission under the excitation of 380 nm and emit blue fluorescence at 470 nm. In addition, the SQDs had good water solubility and stability. Based on the synthesized SQDs, a fluorescence assay for detection of alkaline phosphatase (ALP) was reported. The fluorescence of the SQDs was initially quenched by Cr (VI). In the presence of ALP, ALP-catalyzed hydrolysis of 2-phospho-L-ascorbic acid to generate ascorbic acid. The generated ascorbic acid can reduce Cr (VI) to Cr (III), thus the fluorescence intensity of SQDs was restored. The assay has good sensitivity and selectivity and was applied to the detection of ALP in serum samples. The interesting properties of SQDs can find a wide range of applications in different sensing and imaging areas.
Keywords: alkaline phosphatase; ascorbic acid; fluorescence sensing; nanomaterials; sulfur quantum dots.