3D bioprinting has become a popular medical technique in recent years. The most compelling rationale for the development of 3D bioprinting is the paucity of biological structures required for the rehabilitation of missing organs and tissues. They're useful in a multitude of domains, including disease modelling, regenerative medicine, tissue engineering, drug discovery with testing, personalised medicine, organ development, toxicity studies, and implants. Bioprinting requires a range of bioprinting technologies and bioinks to finish their procedure, that Inkjet-based bioprinting, extrusion-based bioprinting, laser-assisted bioprinting, stereolithography-based bioprinting, and in situ bioprinting are some of the technologies listed here. Bioink is a 3D printing material that is used to construct engineered artificial living tissue. It can be constructed solely for cells, but it usually includes a carrier substance that envelops the cells, then there's Agarose-based bioinks, alginate-based bioinks, collagen-based bioinks, and hyaluronic acid-based bioinks, to name a few. Here we presented about the different bioprinting methods with the use of bioinks in it and then Prospected over various applications in different fields.
Keywords: 3D bioprinting; Applications; Bioinks; In situ bioprinting; Organ and tissue.
Copyright © 2022. Published by Elsevier GmbH.