Demystifying the Risk Assessment Process for Laboratory-Based Experiments Utilizing Invasive Genetic Elements: It Is More Than Gene Drive

Appl Biosaf. 2021 Sep 1;26(3):154-163. doi: 10.1089/apb.20.0074. Epub 2021 Sep 13.

Abstract

Advances in recombinant DNA approaches have resulted in the development of transgene architectures that severely bias their own inheritance, a process commonly referred to as "gene drive." The rapid pace of development, combined with the complexity of many gene drive approaches, threatens to overwhelm those responsible for ensuring its safe use in the laboratory, as even identifying that a specific transgene is capable of gene drive may not be intuitive. Although currently gene drive experiments have been limited to just a few species (mosquitoes, flies, mice, and yeast), the range of organisms used in gene drive research is expected to increase substantially in the coming years. Here the defining features of different gene drive approaches are discussed. Although this will start with a focus on identifying when gene drive could or could not occur, the emphasis will also be on establishing risk profiles based on anticipated level of invasiveness and persistence of transgenes in the surrounding environment. Attention is also called to the fact that transgenes can be considered invasive without being considered gene drive (and vice versa). This further supports the notion that adequate risk assessment requires information regarding the specific circumstances a given transgene or set of transgenes is capable of invading a corresponding population. Finally, challenges in the review and evaluation of work involving gene drive organisms are discussed.

Keywords: biosafety; containment; gene drive; invasive genetic element; risk assessment.