Cell cycle synchronization allows cells in a culture, originally at different stages of the cell cycle, to be brought to the same phase. It is normally performed by applying cell cycle arresting chemical agents to cells cultured in monolayer. While effective, isolated chondrocytes tend to dedifferentiate when cultured in monolayer and typically require 3D culturing methods to ensure phenotypic stability. Here, we describe both the conventional cell cycle synchronization method for cells in monolayer culture and an adapted method of synchronizing primary chondrocytes directly during the cell isolation process to limit potential dedifferentiation. Different methods including serum-starvation and treatment with thymidine, nocodazole, aphidicolin, and RO-3306 can synchronize the chondrocytes at different discrete phases. A cell purity of more than 90% in the S phase can be achieved with simultaneous cell isolation and synchronization using double thymidine treatment, generating a population of synchronized chondrocytes that show increased matrix synthesis when subsequently cultured in 3D.
Keywords: Articular chondrocytes; Cell cycle; Cell monolayers; Primary cells; Synchronization.
© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.