Diversity of gut methanogens and functional enzymes associated with methane metabolism in smallholder dairy cattle

Arch Microbiol. 2022 Sep 8;204(10):608. doi: 10.1007/s00203-022-03187-z.

Abstract

Methane is a greenhouse gas with disastrous consequences when released to intolerable levels. Ruminants produce methane during gut fermentation releasing it through belching and/or flatulence. To better understand the diversity of methanogens and functional enzymes associated with methane metabolism in dairy cows, 48 samples; 6 rumen fluid and 42 dung samples were collected from Kenyan and Tanzanian farms and were analyzed using shotgun metagenomic approach. Statistical analysis for species frequency, relative abundance, percentages, and P values were undertaken using MS Excel and IBM SPSS statistics 20. The results showed archaea from 5 phyla, 9 classes, 16 orders, 25 families, 59 genera, and 87 species. Gut sites significantly contributed to the presence and distribution of various methanogens (P < 0.01). The class Methanomicrobia was abundant in the rumen samples (~ 39%) and dung (~ 44%). The most abundant (~ 17%) methanogen species identified was Methanocorpusculum labreanum. However, some taxonomic class data were unclassified (~ 6% in the rumen and ~ 4% in the dung). Five functional enzymes: Glycine/Serine hydroxymethyltransferase, Formylmethanofuran-tetrahydromethanopterin N-formyltransferase, Formate dehydrogenase, anaerobic carbon monoxide dehydrogenase, and catalase-peroxidase associated with methane metabolism were identified. KEGG functional metabolic analysis for the enzymes identified during this study was significant (P < 0.05) for five metabolism processes. The methanogen species abundances from this study in numbers/kind can be utilized exclusively or jointly as indirect selection criteria for methane mitigation. When targeting functional genes of the microbes/animal for better performance, the concern not to affect the host animal's functionality should be undertaken. Future studies should consider taxonomically categorizing unclassified species.

Keywords: Enzymes; Greenhouse; Kenya; Ruminants; Species; Tanzania.

MeSH terms

  • Animals
  • Cattle
  • Euryarchaeota* / metabolism
  • Female
  • Kenya
  • Methane / metabolism
  • Rumen
  • Ruminants

Substances

  • Methane