Background: Titanium (Ti) is one of the most popular implant materials, and its surface titanium dioxide (TiO2) provides good biocompatibility. The coagulation of blood on Ti implants plays a key role in wound healing and cell growth at the implant site; however, researchers have yet to fully elucidate the mechanism underlying this process on TiO2. Methods: This study examined the means by which blood coagulation was affected by the crystal structure of TiO2 thin films (thickness < 50 nm), including anatase, rutile, and mixed anatase/rutile. The films were characterized in terms of roughness using an atomic force microscope, thickness using an X-ray photoelectron spectrometer, and crystal structure using transmission electron microscopy. The surface energy and dielectric constant of the surface films were measured using a contact angle goniometer and the parallel plate method, respectively. Blood coagulation properties (including clotting time, factor XII contact activation, fibrinogen adsorption, fibrin attachment, and platelet adhesion) were then assessed on the various test specimens. Results: All of the TiO2 films were similar in terms of surface roughness, thickness, and surface energy (hydrophilicity); however, the presence of rutile structures was associated with a higher dielectric constant, which induced the activation of factor XII, the formation of fibrin network, and platelet adhesion. Conclusions: This study provides detailed information related to the effects of TiO2 crystal structures on blood coagulation properties on Ti implant surfaces.
Keywords: blood coagulation; crystal structure; dielectric constant; titanium dioxide; titanium implant surface.