(1) Background: To explore the influence on post-activation potentiation (PAP) when combining different degrees of blood flow restriction (BFR) with multi-levels of resistance training intensity of activation. (2) Purpose: To provide competitive athletes with a more efficient and feasible warm-up program. (3) Study Design: The same batch of subjects performed the vertical jump test of the warm-up procedure under different conditions, one traditional and six BFR procedures. (4) Methods: Participants performed seven counter movement jump (CMJ) tests in random order, including 90% one repetition maximum (1RM) without BFR (CON), and three levels of BFR (30%, 50%, 70%) combined with (30% and 50% 1RM) (BFR-30-30, BFR-30-50, BFR-50-30, BFR-50-50, BFR-70-30 and BFR-70-50). Jump height (H), mean power output (P), peak vertical ground reaction force (vGRF), and the mean rate of force development (RFD) were recorded and measured. (5) Results: Significantly increasing results were observed in: jump height: CON (8 min), BFR-30-30 (0, 4 min), BFR-30-50 (4, 8 min), BFR-50-30 (8 min), BFR-50-50 (4, 8 min), BFR-70-30 (8 min), (p < 0.05); and power output: CON (8 min), BFR-30-30 (0, 4 min), BFR-30-50 (4 min), BFR-50-30 (8 min), BFR-50-50 (4, 8 min) (p < 0.05); vGRF: CON (8 min), BFR-30-30 (0, 4 min), BFR-30-50 (4, 8 min), BFR-50-30 (4 min), BFR-50-50 (4, 8 min) (p < 0.05); RFD: CON (8 min), BFR-30-30 (0, 4 min), BFR-30-50 (4 min), BFR-50-30 (4 min), BFR-50-50 (4 min) (p < 0.05). (5) Conclusions: low to moderate degrees of BFR procedures produced a similar PAP to traditional activation. Additionally, BFR-30-30, BFR-30-50, and BFR-50-50 were longer at PAP duration in comparison with CON.
Keywords: blood flow restriction; college athletes; low-intensity; post-activation potentiation; recovery time.