The Influence on Post-Activation Potentiation Exerted by Different Degrees of Blood Flow Restriction and Multi-Levels of Activation Intensity

Int J Environ Res Public Health. 2022 Aug 25;19(17):10597. doi: 10.3390/ijerph191710597.

Abstract

(1) Background: To explore the influence on post-activation potentiation (PAP) when combining different degrees of blood flow restriction (BFR) with multi-levels of resistance training intensity of activation. (2) Purpose: To provide competitive athletes with a more efficient and feasible warm-up program. (3) Study Design: The same batch of subjects performed the vertical jump test of the warm-up procedure under different conditions, one traditional and six BFR procedures. (4) Methods: Participants performed seven counter movement jump (CMJ) tests in random order, including 90% one repetition maximum (1RM) without BFR (CON), and three levels of BFR (30%, 50%, 70%) combined with (30% and 50% 1RM) (BFR-30-30, BFR-30-50, BFR-50-30, BFR-50-50, BFR-70-30 and BFR-70-50). Jump height (H), mean power output (P), peak vertical ground reaction force (vGRF), and the mean rate of force development (RFD) were recorded and measured. (5) Results: Significantly increasing results were observed in: jump height: CON (8 min), BFR-30-30 (0, 4 min), BFR-30-50 (4, 8 min), BFR-50-30 (8 min), BFR-50-50 (4, 8 min), BFR-70-30 (8 min), (p < 0.05); and power output: CON (8 min), BFR-30-30 (0, 4 min), BFR-30-50 (4 min), BFR-50-30 (8 min), BFR-50-50 (4, 8 min) (p < 0.05); vGRF: CON (8 min), BFR-30-30 (0, 4 min), BFR-30-50 (4, 8 min), BFR-50-30 (4 min), BFR-50-50 (4, 8 min) (p < 0.05); RFD: CON (8 min), BFR-30-30 (0, 4 min), BFR-30-50 (4 min), BFR-50-30 (4 min), BFR-50-50 (4 min) (p < 0.05). (5) Conclusions: low to moderate degrees of BFR procedures produced a similar PAP to traditional activation. Additionally, BFR-30-30, BFR-30-50, and BFR-50-50 were longer at PAP duration in comparison with CON.

Keywords: blood flow restriction; college athletes; low-intensity; post-activation potentiation; recovery time.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Hemodynamics
  • Humans
  • Muscle, Skeletal / physiology
  • Regional Blood Flow / physiology
  • Resistance Training* / methods

Grants and funding

This study was supported by the MOE (Ministry of Education in China) Project of Humanities and Social Sciences (Project No. 19YJC890065), Humanities and Social Science Cultivation Project of Ningbo University (Project No. XPYB19008), and K. C. Wong Magna Fund in Ningbo University.