Methods: Totally 34 LC patients admitted to our hospital between January 2020 and March 2021 (Obs group) and 32 healthy individuals over the same time span (Con group) were enrolled. CDKN2B-AS1 and miR-199a-5p in the two groups were PCR quantified, and their association and value for the diagnosis and therapy of LC were analyzed. In addition, purchased LC cells were adopted for in vitro assays, and the influences of CDKN2B-AS1 and miR-199a-5p on biological behaviours of LC cells were assessed through CCK-8, Transwell, and flow cytometry experiment, and their regulatory association was verified by the dual luciferase reporter (DLR) assay and rescue assay. And the autophagic protein expression was tested by the western blot to confirm the effect of both on the autophagic capacity of LC cells.
Results: CDKN2B-AS1 in LC cases presented high expression and dropped after therapy (P < 0.05), and the opposite situation of miR-199a-5p was found in the LC cases (P < 0.05). In vitro assays, after silencing of CDKN2B-AS1 and upregulation of miR-199a-5p, LC cells presented weaker viability, invasion and migration activities, and stronger apoptotic activity (all P < 0.05). The DLR assay revealed suppressed fluorescence activity of CDKN2B-AS1-WT by miR-199a-5p (P < 0.05). Moreover, according to the rescue assay, the impacts of silencing CDKN2B-AS1 on LC cells could be completely offset by silencing miR-199a-5p (P < 0.05). According to the clone formation and WB assay, the growth and autophagy of LC cells were under the regulation of CDKN2B-AS1 targeting miR-199a-5p (P < 0.05).
Conclusion: With high expression in LC cases, CDKN2B-AS1 is implicated in the development and progression of LC by suppressing cell autophagy through targeting miR-199a-5p.
Copyright © 2022 Lu Xu et al.